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Abstract—Hemifacial spasm is a chronic neurological con-
dition characterized by involuntary facial muscle contractions
caused by nerve compression. While familiar to specialists, it
is less known to the public and general practitioners, which
can lead to difficulties in diagnosis and severity assessment,
and even misdiagnosis. Consequently, patients are common
to have a long medical history. However, long-term patients
tend to have poorer outcomes following surgery, and one-third
of patients experience a delayed cure during postoperative
rehabilitation. Moreover, 4% of patients experience recurrence,
highlighting the importance of early and accurate diagnosis as
well as postoperative monitoring. In this paper, we collected
a video dataset of 50 hemifacial spasm patients and 9 healthy
adults. We identified three facial features from the videos to
establish a novel grading system closely aligned with the med-
ical standards, specifically the Cohen-Albert Grading System.
We also developed algorithms capable of automatically grading
hemifacial spasm using smartphone cameras based on facial
keypoint detection. These algorithms were evaluated on the
dataset, achieving an accuracy of 88% for detection and a
mean absolute error of 0.42 for grading.

Keywords-Hemifacial Spasm, Keypoint Detection, Cohen-
Albert Grading System, AI-Assisted Diagnosis
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I. INTRODUCTION

Hemifacial spasm (HFS) is a chronic neurological disor-
der characterized by involuntary contractions of the facial
muscles on one side of the face, which can significantly im-
pact a patient’s quality of life, leading to social discomfort,
emotional distress, and functional limitations [1]. Although
HFS predominantly affects middle-aged and elderly individ-
uals, there is a trend towards younger age of onset [2].

HFS is uncommon due to its relatively low incidence and
prevalence rates, and epidemiological data on the condition
are limited. Studies conducted in 1990 and 2004 reported an
average annual incidence rate of 0.78 per 100,000 [3], and a
total prevalence rate of 9.8 per 100,000 [4]. However, there
are patients have a medical history lasting up to 8.2 years
[5], and in some cases, up to 15 years [6]. For untreated
consecutive HFS patients, the natural history can extend up

to 42 years (mean 12 years) from the onset of symptoms
[7].

The reasons for the long duration from onset to surgery
in treated patients are multifaceted:

1. Lack of Awareness and Slow Disorder Progres-
sion: Due to the low incidence rate and the rarity
of encountering others with similar symptoms, many
individuals may not recognize it as a disorder. The
condition progresses relatively slowly [8], often only
prompting medical assistance when it significantly im-
pacts daily life, which can take several years to over
a decade. Consequently, patients do not receive timely
and effective guidance.

2. Difficulty in Accurate Diagnosis and Defining Sever-
ity: HFS is relatively uncommon within the field of
neurology. Misdiagnosis and lack of referral from gen-
eral practitioners likely contribute to underestimating
the true prevalence of HFS [4]. Even neurologists may
find it challenging to diagnose and differentiate HFS
accurately. Traditional medical grading methods are
not quantifiable, making it difficult to scientifically and
effectively define the severity of the disorder.

3. Limited Treatment Recommendations and Options
in Primary Hospitals: Patients often initially consider
non-invasive treatments such as medication or acupunc-
ture, which are not curative. High cure-rate treatments
like microvascular decompression (MVD) surgery are
not feasible in primary hospitals, which mainly rely
on non-surgical conservative treatments. In underdevel-
oped and rural regions, some neurologists may not be
aware of treatment options for this condition, nor do
they know where such treatments are available, leading
to ineffective treatment recommendations [9].

Overall, the main challenges for HFS stem from unclear
diagnostic standards and the difficulty in medical grading,
which require experienced specialists and even rely on
patients’ subjective feelings. Therefore, developing a quan-
tifiable method for diagnosing and grading HFS is crucial.
Such a method could reduce medical costs and the waste of
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medical resources, as well as provide an efficient solution for
distant patients to minimize their time and economic costs.
Additionally, it could be used for postoperative follow-up in
telehealth, enabling remote and low-cost medical care.

In this paper, we aim to design an AI-assisted diagnostic
and severity grading algorithm for HFS, addressing the issue
of diagnosis and grading. This solution enables autmomated
diagnosis and grading anytime and anywhere, without re-
quiring additional prior knowledge, and provides crucial
suggestions through preliminary diagnosis and grading, de-
termining whether it is necessary to seek consultation and
treatment from an experienced specialist.

We collected facial video datasets from 50 HFS patients
and 9 healthy adults. Using qualitative methods and the
expertise of an experienced specialist, we quantified three
facial features for grading HFS and proposed a novel HFS
grading system based on them. We then designed and
developed detection and grading algorithms for HFS. The
algorithms were tested on the dataset, achieving a detection
accuracy of 88% and a mean absolute error (MAE) of
grading of 0.42. Our contributions are threefold:

1. We identified measurable three facial features for as-
sessing and grading HFS and proposed a novel HFS
grading system, which addresses the vagueness and
non-quantifiability of traditional medical grading sys-
tems that rely mostly on the accumulated experience
of doctors.

2. We designed and developed algorithms capable of
quantifying HFS for detection and grading.

3. The detection algorithm’s accuracy and the grading al-
gorithm’s MAE were evaluated using collected dataset,
showing results that are close to medical grading sys-
tem.

II. PRELIMINARIES AND RELATED WORK

A. Hemifacial Spasm

Hemifacial spasm (HFS) is a chronic disorder character-
ized by unilateral facial muscle contractions due to abnormal
compression of the facial nerve, often from vascular anoma-
lies in the cerebellopontine angle region [10], [11]. These
contractions can cause involuntary eyelid closure, eyebrow
elevation, visual interference, and social embarrassment,
significantly impacting quality of life [5], [11]–[13]. Limited
epidemiological data report an incidence rate of 0.78 per
100,000 in Olmsted County, Minnesota [3], and a prevalence
rate of 9.8 per 100,000 in Oslo, Norway, increasing with age
[4]. Interestingly, HFS appears more common in some Asian
populations [14].

The efficacy of oral medication and botulinum neurotoxin
injections for HFS is generally limited and transient [15],
[16]. MVD surgery is the most effective approach, address-
ing the underlying cause with a high success rate ranging
from 80% to 88% [16]–[19]. However, about one-third of

patients may experience a delayed cure during postoperative
rehabilitation, which can range from 7 days to 12 months
[20]–[27], and 4% of patients experience recurrence [5].
Moreover, long-term HFS patients often have poorer surgical
outcomes [5]. Therefore, early diagnosis and intervention are
crucial for optimizing treatment results, along with effective
postoperative follow-up to monitor the condition.

A grading system standardizes HFS severity assessment,
aiding clinical diagnosis, treatment planning, and monitor-
ing. The most common is Cohen-Albert Grading System
[28], which categorizes spasticity as follows:

0: None.
I: Increased blinking caused by external stimuli.

II: Mild, noticeable fluttering, not incapacitating.
III: Moderate, very noticeable spasm, mildly incapacitating.
IV: Severely incapacitating (unable to drive, read, etc.).

However, HFS diagnosis must be made by a professional
doctor, as the grading system contains non-quantifiable de-
scriptions. Moreover, HFS has a relatively low incidence and
prevalence rate and shares similarities with other conditions
causing facial twitches, such as psychogenic facial spasm,
facial nerve tic, facial myokymia, blepharospasm, and tar-
dive dyskinesia. These often leads to misdiagnosis and
lack of referral from general practitioners [4], necessitating
specialist evaluation.

B. Facial Keypoint Detection

Facial keypoint detection technology is a crucial technique
in computer vision, enabling the automatic identification
and localization of key feature points on facial images or
videos. These distinguishable characteristic points on the
face, known as facial keypoints, include the corners and cen-
ter of the mouth, nose, and eyes. Typical applications include
facial expression analysis, face recognition, face tracking,
and head gesture understanding [29], [30]. Facial keypoint
detection algorithms can be broadly divided into traditional
machine learning algorithms, such as the holistic method,
constrained local method, and regression-based method, as
well as deep learning-based algorithms [31], [32].

Our work selected two classic facial keypoint detection
models: the 68-point annotation model in dlib and the Face
Mesh model in MediaPipe. Dlib’s model uses an Ensemble
of Regression Trees to predict and refine keypoint positions
[33]. In contrast, Google’s MediaPipe provides the Face
Mesh model, which detects and tracks 468 facial keypoints
using a deep convolutional neural network [34], [35]. While
both models are effective for facial keypoint detection,
dlib’s model offers high accuracy but limited detail with
its 68 keypoints, whereas MediaPipe’s model provides very
high accuracy and detailed feature detection with its 468
keypoints, as well as real-time capabilities, making it popular
for applications such as virtual try-ons, facial animation
capture, and augmented reality filters.
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C. AI-Assisted Diagnosis From Faces

Most neurological conditions manifest on the face,
making facial information valuable for diagnosis. These
conditions include facial paralysis, Parkinson’s disease,
Alzheimer’s disease, amyotrophic lateral sclerosis, and
epilepsy [36]–[38]. Among these, facial paralysis presents
symptoms most similar to HFS. Objective methods for
measuring face paralysis mainly include linear measure-
ment method and image subtraction method, both of which
use quantifiable indicators to reduce diagnostic errors [39].
Based on these objective and quantifiable metrics, AI can
be employed to detect facial paralysis. Traditional machine
learning approaches typically rely on extracting asymmetries
between the two sides of the face, achieving an accuracy
rate of 60.7% [40], [41]. A deep learning approach has also
been proposed with a classification accuracy of 91.25% [42].
However, the developed tools are still rarely used in clinical
practice due to the reliability issues, stemming from a lack
of clinical validation and insufficient applicability.

III. DESIGN A QUANTIFIABLE GRADING SYSTEM

In this section, we mainly describe our data collection
procedure. Then, we quantified three facial features through
qualitative approach based on the data, identifying their rel-
evant patterns for automated grading HFS. Subsequently, we
proposed a novel quantifiable grading system for HFS and
validated it with Kappa coefficient, Spearman correlation
coefficient and MAE to confirm its consistency with the
widely adopted Cohen-Albert Grading System in medical
field.

A. Data Collection

To design our quantifiable grading system and algorithms
for HFS, we collected a facial video dataset involving 50
HFS patients (31 females and 19 males, age ranging from
26 to 74, with a mean age of 54.48 and a standard deviation
of 11.37) and 9 healthy adults (3 females and 6 males, age
ranging from 22 to 30, with a mean age of 25.67 and a
standard deviation of 2.96), with the approval by the Ethics
Committee of Peking University People’s Hospital. All HFS
patients were scheduled to undergo MVD surgery, and the
healthy adults were all college students who identified as not
having any facial disorders. Informed consent was obtained
from all participants prior to their inclusion in the study.

We recorded the facial videos using an iPhone 12 Pro
camera at 1080P and 60 frames per second (FPS). All
recordings were conducted in a controlled environment,
either at the hospital or on campus. Participants sat in a
comfortable chair with a frontal smartphone placed on a
desk facing them. They were instructed to ensure that their
face and neck were clearly visible, free from glasses and
hair obstructions. As HFS can be triggered by relaxing the
face after voluntary and forceful facial muscle contractions
[11], participants were asked to perform two specific facial

movements in the videos: forcefully closing their eyes and
pulling the corners of their mouth to the sides (Figure 1).

Figure 1. Participants were instructed to do two specific facial movements
to trigger HFS symptoms: forcefully closing their eyes (B) and forcefully
pulling the corners of their mouth to the sides (C). Natural status and the
occurrence of HFS are indicated by (A) and (D), respectively.

The procedure includes obtaining consent from the par-
ticipants and collecting the data, took five to ten minutes
to complete. We recorded data from 59 participants, and
7 patients were recorded a second time three to six days
after surgery. This resulted in a total of 9428 seconds of
video footage, with an average length of 142.85 seconds
for each video. All videos were graded and labeled by a
specialist with 14 years of experience based on the Cohen-
Albert Grading System [28].

B. Facial Features Extraction

By observing the HFS symptoms of patients in the videos
and consulting with an experienced specialist, we found
three facial features, each associated with specific HFS
symptoms:

1. Eye Twitching: Symptoms include eyelid twitching or
involuntary eyelid closure.

2. Mouth Twitching: Symptoms include twitching of the
corners of the mouth.

3. Platysma Twitching: Symptoms include involuntary
twitching of the cheeks.

We labeled the patients in the videos for unnatural twitch-
ing of the eyes, the mouth, and the platysma. For each
grade of the Cohen-Albert Grading System, we counted
the proportion of patients exhibiting eye twitching, mouth
twitching, and platysma twitching. The proportions of each
type of twitching are presented in Figure 2, revealing two
distinct patterns:

1. Sequence in the occurrence of twitches: Patients
with mouth twitches often also experience eye twitches,
and patients with platysma twitches frequently exhibit
simultaneous eye and mouth twitches.

2. Variation in twitch locations among different grades:
According to the Cohen-Albert Grading System, pa-
tients rated as grade IV often have platysma twitches,
grade III patients frequently exhibit mouth twitches,
grade I and II patients predominantly have eye twitches,
and grade 0 patients do not exhibit any facial twitches.
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Figure 2. Proportion of patients with different twitching symptoms
categorized by Cohen-Albert Grading System.

C. Validation of Proposed Grading System

The process of using Cohen-Albert Grading System to
grade patients relies on the patients’ subjective feelings
and the specialists’ clinical knowledge. Therefore, it is
neccessary to establish a novel grading standard for HFS.
This grading system should be clearly described, objective,
and quantifiable, allowing for the implementation of an au-
tomated grading approach. Thus, we proposed a quantifiable
grading system based on the three facial features.

Since we discovered a sequence in the occurrence of
twitching and observed that the location of twitching vary
among patients with different severity grades, it is possible
to grade patients based on the location of twitching. We
designed six different grading systems (S1 to S6). For
example, according to the S1 system, level 0 patients have
no twitching at all, level 1 patients have only eye twitching,
level 2 patient have eye and mouth twitching, and level 3
patients have eye, mouth and platysma twitching. In other
systems, the sequence of the location of twitching may be
changed (Table I).

We graded each participant in the dataset based on
these six grading systems and compared the results with
the Cohen-Albert Grading System, calculating their Kappa
coefficient, Spearman correlation coefficient and MAE re-
spectively (Table I).

Table I
CONSISTENCY BETWEEN SIX PROPOSED GRADING STANDARDS

AND COHEN-ALBERT GRADING SYSTEM

Level 1 Level 2 Level 3 KC SCC MAE

S1 Eye Mouth Platysma 0.85 0.95 0.48
S2 Eye Platysma Mouth 0.72 0.88 0.76
S3 Mouth Eye Platysma 0.79 0.92 0.67
S4 Mouth Platysma Eye 0.48 0.77 1.14
S5 Platysma Eye Mouth 0.66 0.89 0.95
S6 Platysma Mouth Eye 0.48 0.77 1.14

Note: Level 0 is ”None” for all standards. KC stands for Kappa
coefficient, SCC stands for Spearman correlation coefficient, and
MAE stands for mean absolute error.

Because our grading systems divide patients into four lev-
els, while the Cohen-Albert Grading System divides patients
into five grades, it is difficult to judge the consistency of the

two systems from the directly calculated Kappa coefficient
and MAE. However, we found that the symptoms of grade
I and grade II patients in Cohen-Albert Grading System
were both mild HFS. Therefore, to facilitate comparison, we
performed additional processing with when calculating the
Kappa coefficient and MAE: grade I and grade II patients
were uniformly recorded as level 1, and grade III and grade
IV patients were recorded as level 2 and level 3 respectively.

As can be seen from Table I, S1 has the highest Kappa
coefficient and Spearman correlation coefficient, and the
lowest MAE. Therefore, S1 is the closest and most consistent
grading system to the Cohen-Albert Grading System.

Therefore, the novel grading system categorizes patients
into four major levels based on the location of twitching:

0: No symptom of HFS.
1: Unnatural twitching only in the eyes.
2: Unnatural twitching in the eyes and mouth.
3: Unnatural twitching in the eyes, mouth and platysma.

IV. AUTOMATED GRADING ALGORITHM

We aim to implement a video-based automated HFS grad-
ing algorithm based on our proposed grading system (Figure
3). The algorithm consists of three sub-algorithms: an eye
twitching detection algorithm, a mouth twitching detection
algorithm, and a platysma twitching detection algorithm.
Each sub-algorithm independently detects the presence of
twitching in the corresponding locations. Ultimately, we
combine the detection results to achieve automated grading
for patients.

Figure 3. Flowchart of our proposed quantifiable HFS grading system.

A. Eye Twitching Detection

Generally speaking, when a patient’s eye twitches, the size
of the eye changes significantly within a short period of time.
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To calculate the eye size, we use Mediapipe’s FaceMesh
model to detect five key points on the upper and lower
eyelids of both the left and right eyes, totaling 20 key points.
We then calculate the average y-coordinates of the key points
on the upper and lower eyelids of each eye respectively, and
define the eye size as the difference between these average
y-coordinates.

However, different face shapes may lead to different eye
sizes, and different video recording resolutions may also lead
to different eye sizes. In order to eliminate the errors caused
by different face shapes and video ratios, we calculate the
percentage of eye size as follows:

Peye =
Si

1
n

∑n
i=1 Si

(1)

where Peye is the percentage of eye size, Si is the eye size
in a certain frame i, n is the total number of frames.

When patients blink and close their eyes in the video,
the eye size also changes significantly in a short period of
time. In order to eliminate the errors caused by blinking and
closing eyes, when the eye size is less than or equal to a
certain blink and close eye threshold, we uniformly record
the subsequent eye size as the threshold until the eye size is
greater than the threshold again.

We find that the eye size of a patient with eye twitching
rapidly decrease and then increase within a short period of
time. Based on this pattern, we designed an algorithm to
detect eye twitching. Additionally, since an eye twitch is
short-lived, we choose one-third of a second as the maximum
frame interval of a twitch. The pseudo code of the eye
twitching detection algorithm is provided below (Algorithm
1).

Algorithm 1 Eye Twitching Detection.
1: extremes ← FindLocalExtremes(ratio recorder)
2: for each extreme in extremes do
3: if extreme is ’Local Minimum’ then
4: extreme l ← FindLeftExtreme(extreme)
5: extreme r ← FindRightExtreme(extreme)
6: amplitude ← extreme l+extreme r−2∗extreme
7: if amplitude ≥ TWITCH THRESHOLD then
8: twitch recorder ← eye, frame, amplitude
9: end if

10: end if
11: end for

B. Mouth Twitching Detection

Similar to eye twitching, when a patient experiences
mouth twitching, the distance between the corners of the
mouth changes significantly within a short period of time. To
calculate this distance, we use Mediapipe’s FaceMesh model
to detect three key points at the left and right corners of the
mouth, totaling six key points. We define the mouth corner

distance as the Euclidean distance between the central points
of the left and right mouth corners. To eliminate the errors
caused by face shape and video resolution, we calculate the
percentage of mouth corner distance as follows:

Pmouth =
Di

1
n

∑n
i=1 Di

(2)

where Pmouth is the percentage of mouth corner distance, Di

is the mouth corner distance in a certain frame i, n is the
total number of frames.

Since patients can be induced HFS symptoms by force-
fully pulling the corners of their mouth to the sides when
recording videos, conscious pulling behavior needs to be
excluded when detecting patients’ mouth twitching. There-
fore, when the mouth corner distance is greater than or equal
to a certain pulling threshold, the subsequent mouth corner
distances can be uniformly recorded as the threshold until
the mouth corner distance is less than the threshold again.

We discover that the mouth corner distance of a partici-
pant with mouth twitching rapidly increase and then decrease
in a short period of time. Based on this pattern, we design an
algorithm similar to eye twitching detection. The difference
is that when detecting mouth twitching, we use the local
maximum instead of the local minimum.

C. Platysma Twitching Detection
The eye and mouth twitching detection algorithms are

very similar in principle and method. However, it is difficult
to use the same principle and method to detect the platysma
twitching for two main reasons: the facial key point detection
technology cannot detect the key points near the platysma,
and platysma twitching may be difficult to observe directly
due to light, clothing, hair and other factors in the video.

Therefore, we aim to use six possible feature vectors to
determine whether the patient in the video has platysma
twitching. These six feature vectors are:

1. Frequency of eye twitching
2. Average twitch amplitude of eye twitching
3. Maximum twitch amplitude of eye twitching
4. Frequency of mouth twitching
5. Average twitch amplitude of mouth twitching
6. Maximum twitch amplitude of mouth twitching
In terms of model selection, we chose the decision tree.

It is a white box model, so we can understand the decision
process of the model by looking at the tree structure.
However, due to the size of the current dataset, we need
to prevent overfitting when using decision tree. We used
five-fold cross-validation to calculate the average accuracy
of decision tree of different depths in predicting platysma
twitching.

V. RESULTS

A. Thresholds for Eye and Mouth Twitching Detection
We selected two videos, one featuring a participant with

eye twitching and one without, calculated the eye size in
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the videos frame by frame, performed the above two steps
of preprocessing, and plotted the curve of eye size changing
over time. In Figure 4, the blue and purple curve is the curve
of eye size changing over time of the participant without eye
twitching, while the red and orange curve is the participant
with eye twitching.

Figure 4. The eye size changes were compared between participants with
eye twitching (red) and without eye twitching (blue), with a 0.5 threshold
of eye blinking and closing (grey).

We also selected two videos, one featuring a participant
with mouth twitching and one without, calculated the mouth
corner distance in the videos frame by frame. In Figure 5,
the blue curve is the participant without mouth twitching,
while the red curve is the participant with mouth twitching.

Figure 5. The mouth twitching curve changes were compared between
participants with mouth twitching (red) and without mouth twitching (blue),
with a 1.05 pulling threshold (grey).

It was observed that when the eye blinking and closing
threshold is 0.5, it effectively distinguishes blinking and
closing eyes without interfering with the detection of eye
twitching. Meanwhile, when the pulling threshold is 1.05,
it effectively identifies pulling behavior without interfering
with the detection of unnatural twitching of the mouth
corners.

In order to select the best twitch thresholds for eye and
mouth, we used different twitch thresholds to detect eye
twitching and mouth twitching. However, the time cost of
annotating each eye and mouth twitch of the patient in the
video is relatively large. Therefore, when calculating the
algorithm metrics, we only compare whether the patient in

the video actually has eye twitching and mouth twitching
with the detected eye twitching and mouth twitching. Table
II is the algorithm metrics when using different eye and
mouth twitch thresholds.

Table II
ALGORITHM METRICS FOR DIFFERENT EYE AND MOUTH TWITCH

THRESHOLDS

Threshold Accuracy Precision Recall F1 Score

Eye

0.03 83.33% 87.18% 94.44% 0.91
0.04 88.1% 91.89% 94.44% 0.93
0.05 85.71% 94.12% 88.89% 0.91
0.06 88.1% 96.97% 88.89% 0.93
0.07 88.1% 96.97% 88.89% 0.93
0.08 85.71% 96.88% 86.11% 0.91

Mouth

0.015 78.57% 85.19% 82.14% 0.84
0.016 76.19% 84.62% 78.57% 0.81
0.017 76.19% 87.5% 75% 0.81
0.018 71.43% 86.36% 67.86% 0.76
0.019 66.67% 85% 60.71% 0.71
0.020 61.9% 83.33% 53.57% 0.65

We found that the algorithm had the highest accuracy
and precision when the eye twitch threshold was 0.06,
which indicates that when the eye size changes by more
than 6% in a short period of time, it often sigifies the
eye twitching. Similarly, we found that the algorithm had
the highest precision and relatively high accuracy when the
mouth twitch threshold was 0.017, which indicates that when
the mouth corner distance changes by more than 1.7% in a
short period of time, it often signifies the mouth twitching.

B. Model Visualization for Platysma Twitching Detection

We used five-fold cross-validation to calculate the average
accuracy of decision tree of different depths in predicting
platysma twitching, and found that the decision tree with a
depth of three had the highest average accuracy.

We plotted the rule graph of the decision tree (Figure 6)
and calculated the importance of different feature vectors
(Table III) in the model. Due to the current size of the
dataset, the decision tree may not necessarily be suitable
for all HFS patients. However, we found that the rules of
the decision tree are consistent with our expectation, which
is patients with platysma twitching often exibit the following
characteristics: eye and mouth twitching, high frequency of
eye twitching, and large amplitude of eye twitching and
mouth twitching.

C. Algorithm Performance

For patients and healthy individuals in our video dataset,
we extracted a 20-second video clip for each, ensuring to
include the HFS symptoms and instructed facial movements
(such as blinking, and pulling the corners of mouth to each
side) as much as possible. We then manually grade each clip
based on the presence of eye twitching, mouth twitching,
or platysma twitching. Ultimately, our test set comprised
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Figure 6. Rule graph of the decision tree for platysma twitching detection
algorithm.

Table III
IMPORTANCE OF DIFFERENT FEATURE VECTORS

Feature Importance

Frequency of Eye Twitching 0.13
Avg Amplitude of Eye Twitching 0.24
Max Amplitude of Eye Twitching 0.17

Frequency of Mouth Twitching 0
Avg Amplitude of Mouth Twitching 0.34
Max Amplitude of Mouth Twitching 0.12

50 video clips, each with a duration of 20 seconds. We
compared the results of automated grading with manual
grading and generated the corresponding confusion matrix
(Figure 7).

Figure 7. Confusion matrix between automated and manual grading.

The accuracy of the detection algorithm is 88%. By
observing the confusion matrix, we found that only one
patient without HFS was misdiagnosed as having HFS, and
four patients with HFS were misdiagnosed as not having
HFS.

The accuracy of the grading algorithm is 68%. By ob-
serving the confusion matrix, we found that the algorithm
performed well in grading patients at level 0 and level 3, but
had lower accuracy for patients at level 1 and level 2. This
discrepancy is primarily due to the relatively low recall of
the mouth twitching detection algorithm. The MAE of the
grading algorithm is 0.42, indicating that the majority of
patients are classified as the correct grading or do not differ

by more than one grade from the correct grading.

VI. DISCUSSION

Although many existing studies have applied facial key-
point and localization detection in assistive medical diag-
nosis, these typically address common disorders (e.g. facial
paralysis) that people and doctors can easily identify, while
our work focuses on an uncommon disorder, hemifacial
spasm. Patients suffering from HFS often go undiagnosed,
misdiagnosed and untreated for long periods. Additionally,
the slow progression of HFS and the possibility of delayed
cure necessitate frequent doctor visits to monitor the severity
of the condition. However, most patients are unable to do
so due to the costs of time, distance, and medical fees.
Therefore, our work provides a novel approach for people,
particularly distant patients and primary care doctors, to
assist in diagnosis in a cost-effective and relatively accurate
way.

By analyzing videos of patients exhibiting HFS symptoms
and consulting with an experienced specialist, we iden-
tified three primary facial features: eye twitching, mouth
twitching, and platysma twitching. We observed a sequential
pattern in the occurrence of these twitches, with variations
in twitch locations corresponding to different severity grades
of the condition. Therefore, we designed a grading system
based on the specific locations of these twitches. To detect
eye and mouth twitching, we utilize Mediapipe’s FaceMesh
model to capture 26 key facial points. We define two
critical feature values: eye size and mouth corner distance.
Our findings indicate that an eye size change exceeding
6% within a short period typically signifies eye twitching,
while a mouth corner distance change exceeding 1.7% often
indicates mouth twitching.

However, there are several limitations in our work. First,
detecting platysma twitching is challenging, so the algo-
rithms were designed based on metrics of eye and mouth
movements to substitute for platysma twitching detection.
Second, while triggering spasms is possible, it is impossible
to control the exact timing of their occurrence. Therefore,
we cannot ensure that the most severe spasm happens when
data are collected from each patient. Our algorithms can only
provide results based on the input videos.

Our work established AI-assisted diagnostic algorithms
based on facial keypoint detection using a collected fa-
cial video dataset, marking the first medical-engineering
application research related to HFS. Our algorithms provide
a significant foundation for subsequent app development,
enabling the detection and grading of the severity of the
condition. This offers people a convenient, fast, and low-
cost preliminary diagnosis without requiring any medical
knowledge. Additionally, if we can deploy the algorithm to
a mobile app and promote it to the public, it will facilitate
data growth. Eventually, using deep learning approaches may
enable continuous improvement in the accuracy of diagnosis
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and grading. The ultimate goal is to develop a self-learning
AI-assisted diagnostic algorithm that can achieve a level of
expertise comparable to that of an experienced specialist.

VII. CONCLUSION

Hemifacial spasm has a relatively low incidence and
prevalence rate, and its similarity to other facial disorders
makes it prone to misdiagnosis. The grading system for HFS
is complex and non-quantifiable, posing a challenge for non-
specialists such as general practitioners to diagnose HFS.
In this paper, we presented an approach to quantify facial
features and indicators for detecting and grading HFS. We
collected facial videos of HFS patients and healthy adults
to design and develop algorithms capable of detecting and
grading HFS. Our algorithms were evaluated on the dataset,
achieving an accuracy of 88% for detection and a mean
absolute error of 0.42 for grading, closely aligning with the
medical grading system.
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treatment options,” Deutsches Ärzteblatt International, vol.
109, no. 41, p. 667, 2012.

[6] H. Miwa, Y. Mizuno, and T. Kondo, “Familial hemifacial
spasm: report of cases and review of literature,” Journal of
the neurological sciences, vol. 193, no. 2, pp. 97–102, 2002.

[7] J.-A. Lee, K.-H. Kim, and K. Park, “Natural history of
untreated hemifacial spasm: a study of 104 consecutive pa-
tients over 5 years,” Stereotactic and functional neurosurgery,
vol. 95, no. 1, pp. 21–25, 2017.

[8] G. Ehni and H. W. WOLTMAN, “Hemifacial spasm: review
of one hundred and six cases,” Archives of Neurology &
Psychiatry, vol. 53, no. 3, pp. 205–211, 1945.

[9] K. I. Chan, Y. Wang, S. Hu, B. Hei, Z. Lu, P.-L. P. Rau, and
Y. Shi, “The odyssey journey: Hemifacial spasm patients’ top-
tier medical resource seeking in china from an actor-network
perspective,” 2024.

[10] N.-C. Tan, L.-L. Chan, and E.-K. Tan, “Hemifacial spasm
and involuntary facial movements,” Qjm, vol. 95, no. 8, pp.
493–500, 2002.

[11] G. Abbruzzese, A. Berardelli, and G. Defazio, “Hemifacial
spasm,” Handbook of clinical neurology, vol. 100, pp. 675–
680, 2011.

[12] R. H. Wilkins, “Hemifacial spasm: a review,” Surgical neu-
rology, vol. 36, no. 4, pp. 251–277, 1991.

[13] J. Greenwood, “The surgical treatment of hemifacial spasm,”
Journal of Neurosurgery, vol. 3, no. 6, pp. 506–510, 1946.

[14] N. Poungvarin, V. Devahastin, and A. Viriyavejakul, “Treat-
ment of various movement disorders with botulinum a toxin
injection: an experience of 900 patients.” Journal of the
Medical Association of Thailand= Chotmaihet thangphaet,
vol. 78, no. 6, pp. 281–288, 1995.

[15] A. Wang and J. Jankovic, “Hemifacial spasm: clinical findings
and treatment,” Muscle & Nerve: Official Journal of the
American Association of Electrodiagnostic Medicine, vol. 21,
no. 12, pp. 1740–1747, 1998.

[16] F. G. Barker, P. J. Jannetta, D. J. Bissonette, P. T. Shields,
M. V. Larkins, and H. D. Jho, “Microvascular decompression
for hemifacial spasm,” Journal of neurosurgery, vol. 82, no. 2,
pp. 201–210, 1995.

[17] M. Montava, V. Rossi, C. C. Fais, J. Mancini, and J.-
P. Lavieille, “Long-term surgical results in microvascular
decompression for hemifacial spasm: efficacy, morbidity and
quality of life,” Acta Otorhinolaryngologica Italica, vol. 36,
no. 3, p. 220, 2016.

[18] Y. Yuan, Y. Wang, S.-x. Zhang, L. Zhang, R. Li, and J. Guo,
“Microvascular decompression in patients with hemifacial
spasm: report of 1200 cases,” Chinese medical journal, vol.
118, no. 10, pp. 833–836, 2005.

[19] M. Dannenbaum, B. C. Lega, D. Suki, R. L. Harper, and
D. Yoshor, “Microvascular decompression for hemifacial
spasm: long-term results from 114 operations performed with-
out neurophysiological monitoring,” Journal of neurosurgery,
vol. 109, no. 3, pp. 410–415, 2008.

[20] M. Sindou and P. Mercier, “Microvascular decompression for
hemifacial spasm: Outcome on spasm and complications. a
review.” Neuro-chirurgie, vol. 64, no. 2, pp. 106–116, 2018.

[21] K. Heuser, E. Kerty, P. Eide, M. Cvancarova, and E. Dietrichs,
“Microvascular decompression for hemifacial spasm: postop-
erative neurologic follow-up and evaluation of life quality,”
European journal of neurology, vol. 14, no. 3, pp. 335–340,
2007.

273



[22] R. G. AUGER, D. G. PIEPGRAS, and E. R. LAWS Jr, “Hemi-
facial spasm: results of microvascular decompression of the
facial nerve in 54 patients,” in Mayo Clinic Proceedings,
vol. 61, no. 8. Elsevier, 1986, pp. 640–644.

[23] T. Fukushima, “Microvascular decompression for hemifacial
spasm: results in 2890 cases,” Neurovascular surgery, pp.
1133–1145, 1955.

[24] R. Illingworth, D. Porter, and J. Jakubowski, “Hemifacial
spasm: a prospective long-term follow up of 83 cases treated
by microvascular decompression at two neurosurgical centres
in the united kingdom.” Journal of Neurology, Neurosurgery
& Psychiatry, vol. 60, no. 1, pp. 72–77, 1996.

[25] M. Ishikawa, T. Ohira, J. Namiki, M. Kobayashi, M. Takase,
T. Kawase, and S. Toya, “Electrophysiological investigation
of hemifacial spasm after microvascular decompression: F
waves of the facial muscles, blink reflexes, and abnormal
muscle responses,” Journal of neurosurgery, vol. 86, no. 4,
pp. 654–661, 1997.

[26] T. Iwakuma, A. Matsumoto, and N. Nakamura, “Hemifacial
spasm: Comparison of three different operative procedures in
110 patients,” Journal of Neurosurgery, vol. 57, no. 6, pp.
753–756, 1982.

[27] J. C. Shin, U. H. Chung, Y. C. Kim, and C. I. Park, “Prospec-
tive study of microvascular decompression in hemifacial
spasm,” Neurosurgery, vol. 40, no. 4, pp. 730–735, 1997.

[28] D. A. Cohen, P. J. Savino, M. B. Stern, and H. I. Hurtig,
“Botulinum injection therapy for blepharospasm: a review and
report of 75 patients,” Clinical neuropharmacology, vol. 9,
no. 5, pp. 415–429, 1986.
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